April 12, 2018, 14:49 PDT

Finding new ways to feed the world

By Adam Voiland,
NASA's Earth Observatory

Chart courtesy of IFPRI.

Chart courtesy of IFPRI.

If you take the long view, our world is much better fed than it used to be. In the 1970s, about one-third of people in developing countries were undernourished; today the number is 13 percent. Even as global population has increased, it has been a long time since the horrific famines that claimed 5 million lives or more in the Soviet Union, China, Europe, and India during the 20th Century.

However, serious food shortages remain a fact of life. Roughly 815 million people were undernourished in 2016, according to the UN Food and Agricultural Organization. That is an increase of 38 million people from 2015, making 2016 the first year in more than a decade that the world grew hungrier. The grim trend was driven largely by armed conflicts in South Sudan, Yemen, Nigeria, and Syria.


Meanwhile, other problems loom. Climate change is already starting to exacerbate famines, as temperature and precipitation patterns shift. Many experts worry that food production systems may struggle to adapt in coming decades. Even if problems caused by climate change turn out to be modest, global populations are expected to increase to 10 billion people by 2050, and the demand for food will likely go up by 50 percent or more as people in the developing world increase their income and consume foods that require more resources to produce.

Solving global problems sometimes requires a global view, so NASA’s Applied Sciences Program is working to make sure the world’s food systems are ready for the future. Researchers and program managers have created an agency-wide initiative to put remote sensing data and knowledge into the hands of people who can advance agriculture and reduce world hunger.

Earth Matters sat down with Sean McCartney, the coordinator of NASA’s new Food Security Office, to learn more.

Earth Matters: How did NASA get involved with food security?

McCartney: People sometimes forget that NASA’s charter states that one of the agency’s key objectives is “the expansion of human knowledge of the Earth and of phenomena in the atmosphere and space.” There are currently around 20 Earth-observing satellites that collect data on the hydrosphere, biosphere, and atmosphere. NASA has been able to leverage this data through scientific analysis and modeling to better understand food systems on a global scale.

Chart courtesy of NASA’s Earth Observing System Project Science Office.

The food security initiative is part of our Applied Sciences Program, which does outreach with end users and showcases Earth observations. Through this program, NASA began to work with the United Nations on Sustainable Development Goals (SGDs), a global effort to end poverty, protect the planet, and ensure prosperity for all. Some of the goals relate to water and food security, and NASA leadership believed that that was an area where Earth observations could really contribute. Getting involved with the SGDs dovetailed with the establishment of the Food Security Office.

How do satellites and Earth-observing data relate to the food situation on the ground?

We already do a lot with satellites to monitor major commodity crops like rice, maize, wheat, and soy. We can use satellites to help track key crop characteristics, such as the “greenness” of vegetation (NDVI), crop type, the acreage and distribution of crops, precipitation, soil moisture, evapotranspiration, and more. This sort of environmental data is incorporated into important crop assessment reports, such as the GEOGLAM Crop Monitor, a monthly bulletin on conditions for major crops around the world.


Likewise, the U.S. Agency for International Development (USAID) uses satellite data as part of its Famine Early Warning Systems Network (FEWS NET), which produces frequent reports on food conditions in 34 of the most famine-prone countries in the world.

What we’re trying to do is optimize programs and tools like these — and develop others — and get them into the right hands at the right time. NASA assets help inform governments, NGOs, the private sector, and other stakeholders to anticipate and react to food shortages.

Map courtesy of FEWS NET

What are the main priorities of the new office?

A lot of our efforts so far have been through the Earth Observations for Food Security and Agriculture Consortium (EOFSAC), a program led by the University of Maryland. It really is a multidisciplinary group, which is what makes the program so exciting. The consortium has roughly 40 partner organizations from government, NGOs, international organizations, universities, and the private sector all working together. You can see a full list of the partners here.

What is on the consortium’s agenda?

Partnering with both the private and public sector—for instance, USDA and USAID—is one focus. They are going to be looking at innovative ways where Earth observations can provide value to end users. That might involve working with the reinsurance industry to provide them with a broad view of crops or working with USDA’s National Agricultural Statistics Service to develop ways of incorporating more satellite data into their workflow.

What has the office done recently?

In February 2018, the consortium sponsored a workshop at the National Agricultural Library focusing on emerging technologies in Earth observations. Presenters highlighted several new sensors and data sets that are now being applied to agriculture — such as soil moisture, solar induced fluorescence, and satellite-derived precipitation. For a full account of the meeting, you can read the minutes here.

Photo courtesy of EOFSAC

Is it looking at how climate change will affect food systems?

Yes. A lot of what the folks at NASA’s Goddard Institute for Space Studies are doing is modeling that assimilates Earth observations into long-term forecasts. They’re studying how climate change will affect crop productivity in the future. There’s an international effort called the Agricultural Model Intercomparison Project (AGMIP) that is focused on this and is a rich source of information.

How would you say the world is doing in regards to food security?

It really depends on the country. If you look at overall food production, even in countries that are in need, they might be producing adequate food, but they don’t have access to markets, so they can’t get that food to people before it spoils.

Is it possible to follow some of these organizations and projects on social media?

Yes, check out @EOFSAC, @GEOCropMonitor, @FEWSNET, @G20_GEOGLAM, and @AgMIPnews.

This piece was originally published on NASA Earth Observatory's Earth Matters blog.

April 3, 2018, 06:36 PDT

A is for aerosol

By Adam Voiland,
NASA's Earth Observatory

A smoke plume spans the United States. NASA Earth Observatory image by Jesse Allen, using VIIRS data from the Suomi National Polar-orbiting Partnership.

A smoke plume spans the United States. NASA Earth Observatory image by Jesse Allen, using VIIRS data from the Suomi National Polar-orbiting Partnership.

Aerosol: A collection of microscopic particles, solid or liquid, suspended in a gas. They drift in Earth’s atmosphere from the stratosphere to the surface and range in size from a few nanometers—less than the width of the smallest viruses—to several several tens of micrometers—about the diameter of human hair. Despite their small size, they have major impacts on climate and health.

Different specialists describe the particles based on shape, size, and chemical composition. Toxicologists refer to aerosols as ultrafine, fine, or coarse matter. Regulatory agencies, as well as meteorologists, typically call them particulate matter—PM2.5 or PM10, depending on their size. In some fields of engineering, they’re called nanoparticles. Everyday terms that hint at aerosol sources, such as smoke, ash, haze, dust, pollution, and soot are widely used as well.

Climatologists typically use another set of labels that speak to the chemical composition. Key aerosol groups include sulfates, organic carbon, black carbon, nitrates, mineral dust, and sea salt. In practice, many of these terms are imperfect, as aerosols often clump together to form complex mixtures. It’s common, for example, for particles of black carbon from soot or smoke to mix with nitrates and sulfates, or to coat the surfaces of dust, creating hybrid particles.

Satellite imagery of aerosols:

NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey.
NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey.
NASA images by Jeff Schmaltz and Joshua Stevens, using MODIS data from LANCE/EOSDIS Rapid Response.
NASA images by Jeff Schmaltz and Joshua Stevens, using MODIS data from LANCE/EOSDIS Rapid Response.
Smoke and haze in the Indo-Gangetic Plain. (NASA Earth Observatory image by Joshua Stevens, using data from the Land Atmosphere Near real-time Capability for EOS.)
Smoke and haze in the Indo-Gangetic Plain. NASA Earth Observatory image by Joshua Stevens, using data from the Land Atmosphere Near real-time Capability for EOS.

Aerosols in the news:

Air Quality Suffering in China, NASA Earth Observatory
Tracking Dust Across the Atlantic, NASA Earth Observatory

Where to learn more:

Tiny Particles, Big Impact
Aerosols as explained by the IPCC
Aerosols and Climate Change

Read the alphabet from space

A is for aerosols altering an astronaut’s view of an ancient assemblage of rock in a state adjacent to Arizona!

About this glossary

There are other glossaries out there, but there aren’t many visual earth science glossaries, particularly those with a focus on satellite imagery. To fill that gap, Earth Matters is working on building its own. Have suggestions for what we should include? Comment on a post or send us an email.

This piece was originally published on NASA Earth Observatory's Earth Matters blog.

February 20, 2018, 10:05 PST

What climate change means for glaciers, storms, fires, clouds and more

By Adam Voiland,
NASA's Earth Observatory

What climate change means for glaciers, storms, fires, clouds and more

NASA Earth Observatory readers may recognize this image of a long trail of clouds — an atmospheric river — reaching across the Pacific Ocean toward California. It appeared first as an Image of the Day about how these moisture superhighways fueled a series of drought-busting rain and snow storms.

More recently, we were pleased to see that image on the cover of the Fourth National Climate Assessment — a major report issued by the U.S. Global Research Program. That image was one of many from Earth Observatory that appeared in the report. Since the authors did not give much background about the images, here is a quick rundown of how they were created and how they fit with some of the key points on our changing climate.

Hurricanes in the Atlantic

Found in Chapter 1: Our Globally Changing Climate


What the image shows:
Three hurricanes — Katia, Irma, and Jose — marching across the Atlantic Ocean on September 6, 2017.

What the report says about tropical cyclones and climate change:
The frequency of the most intense hurricanes is projected to increase in the Atlantic and the eastern North Pacific. Sea level rise will increase the frequency and extent of extreme flooding associated with coastal storms, such as hurricanes.

How the image was made:
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite collected the data. Earth Observatory staff combined several scenes, taken at different times, to create this composite. Original source of the image: Three Hurricanes in the Atlantic

The North Pole

Found in Chapter 2: Physical Drivers of Climate Change

North Pole

What the image shows:
Clouds swirl over sea ice, glaciers, and green vegetation in the Northern Hemisphere, as seen on a spring day from an angle of 70 degrees North, 60 degrees East.

What the report says about climate change and the Arctic:
Over the past 50 years, near-surface air temperatures across Alaska and the Arctic have increased at a rate more than twice as fast as the global average. It is very likely that human activities have contributed to observed Arctic warming, sea ice loss, glacier mass loss, and a decline in snow extent in the Northern Hemisphere.

How it was made:
Ocean scientist Norman Kuring of NASA’s Goddard Space Flight Center pieced together this composite based on 15 satellite passes made by VIIRS/Suomi NPP on May 26, 2012. The spacecraft circles the Earth from pole to pole, so it took multiple passes to gather enough data to show an entire hemisphere without gaps. Original source of the image: The View from the Top

Columbia Glacier

Found in Chapter 3: Detection and Attribution of Climate Change

Columbia glacier

What the image shows:
Columbia Glacier in Alaska, one of the most rapidly changing glaciers in the world.

What the report says about Alaskan glaciers and climate change:
The collective ice mass of all Arctic glaciers has decreased every year since 1984, with significant losses in Alaska.

How the image was made:
NASA Earth Observatory visualizers made this false-color image based on data collected in 1986 by the Thematic Mapper on Landsat 5. The image combines shortwave-infrared, near-infrared, and green portions of the electromagnetic spectrum. With this combination, snow and ice appears bright cyan, vegetation is green, clouds are white or light orange, and open water is dark blue. Exposed bedrock is brown, while rocky debris on the glacier’s surface is gray. Original source of the image: World of Change: Columbia Glacier

Cloud streets

Found in Intro to Chapter 4: Climate Models, Scenarios, and Projections

Cloud streets

What the image shows:
Sea ice hugging the Russian coastline and cloud streets streaming over the Bering Sea.

What the report says about clouds and climate change:
Climate feedbacks are the largest source of uncertainty in quantifying climate sensitivity — that is, how much global temperatures will change in response to the addition of more greenhouse gases to the atmosphere.

How it was made:
The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on January 4, 2012. The LANCE/EOSDIS MODIS Rapid Response Team generated the image, and NASA Earth Observatory staff cropped and labeled it. Original source of the image: Cloud streets over the Bering Sea

Extratropical cyclones

Found in Intro to Chapter 5: Large-scale circulation and climate variability


What it shows:
Two extratropical cyclones, the cause of most winter storms, churned near each other off the coast of South Africa in 2009.

What the report says about extratropical storms and climate change:
There is uncertainty about future changes in winter extratropical cyclones. Activity is projected to change in complex ways, with increases in some regions and seasons and decreases in others. There has been a trend toward earlier snowmelt and a decrease in snowstorm frequency on the southern margins of snowy areas. Winter storm tracks have shifted northward since 1950 over the Northern Hemisphere.

How the image was made:
The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image. The LANCE/EOSDIS MODIS Rapid Response Team generated the image and NASA Earth Observatory staff cropped and labeled it. Original source of the image: Cyclonic Clouds over the South Atlantic Ocean

Sea of sand

Found in Chapter 6: Temperature Changes in the United States

Sea of sand

What the image shows: Large, linear sand dunes alternating with interdune salt flats in the Rub’ al Khali in the Sultanate of Oman.

What the report says about drought, dust storms, and climate change:
The human effect on droughts is complicated. There is little evidence for a human influence on precipitation deficits, but a lot of evidence for a human fingerprint on surface soil moisture deficits — starting with increased evapotranspiration caused by higher temperatures. Decreases in surface soil moisture over most of the United States are likely as the climate warms. Assuming no change to current water resources management, chronic hydrological drought is increasingly possible by the end of the 21st century. Changes in drought frequency or intensity will also play an important role in the strength and frequency of dust storms.

How it was made: An astronaut on the International Space Station took the photograph with a Nikon D3S digital camera using a 200 millimeter lens on May 16, 2011. Original source of the image: Ar Rub’ al Khali Sand Sea, Arabian Peninsula

Flooding on the Missouri River

Found in Chapter 7: Precipitation Change in the United States


What the image shows:
Sediment-rich flood water lingering on the Missouri River in July 2011.

What the report says about precipitation, floods, and climate change:
Detectable changes in flood frequency have occurred in parts of the United States, with a mix of increases and decreases in different regions. Extreme precipitation, one of the controlling factors in flood statistics, is observed to have generally increased and is projected to continue to do. However, scientists have not yet established a significant connection between increased river flooding and human-induced climate change.

How the image was made:
The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured the data for this natural-color image. NASA Earth Observatory staff processed, cropped, and labeled the image. Original source of the image: Flooding near Hamburg, Iowa

Smoke and fire

Found in Chapter 8: Droughts, Floods, and Wildfires


What the image shows:
Smoke streaming from the Freeway fire in the Los Angeles metro area on November 16, 2008.

What the report says about wildfires and climate change:
The incidence of large forest fires in the western United States and Alaska has increased since the early 1980s and is projected to further increase as the climate warms, with profound changes to certain ecosystems. However, other factors related to climate change — such as water scarcity or insect infestations — may act to stifle future forest fire activity by reducing growth or otherwise killing trees.

How it was made: The MODIS Rapid Response Team made this image based on data collected by NASA’s Aqua satellite. Original source of the image: Fires in California

The Colorado River and Grand Canyon

Found in Chapter 10: Changes in Land Cover and Terrestrial Biogeochemistry


What the image shows:
The Grand Canyon in northern Arizona.

What the report says about climate change and the Colorado River:
The southwestern United States is projected to experience significant decreases in surface water availability, leading to runoff decreases in California, Nevada, Texas, and the Colorado River headwaters, even in the near term. Several studies focused on the Colorado River basin showed that annual runoff reductions in a warmer western U.S. climate occur through a combination of evapotranspiration increases and precipitation decreases, with the overall reduction in river flow exacerbated by human demands on the water supply.

How the image was made:
On July 14, 2011, the ASTER sensor on NASA’s Terra spacecraft collected the data used in this 3D image. NASA Earth Observatory staff made the image by draping an ASTER image over a digital elevation model produced from ASTER stereo data. Original source of the image: Grand New View of the Grand Canyon

Arctic sea ice

Found in Chapter 11: Arctic Changes and their Effects on Alaska and the Rest of the United States

Sea ice

What the image shows: A clear view of the Arctic in June 2010. Clouds swirl over sea ice, snow, and forests in the far north.

What the report says about sea ice and climate change: Since the early 1980s, annual average Arctic sea ice has decreased in extent between 3.5 percent and 4.1 percent per decade, become 4.3 to 7.5 feet (1.3 and 2.3 meters) thinner. The ice melts for at least 15 more days each year. Arctic-wide ice loss is expected to continue through the 21st century, very likely resulting in nearly sea ice-free late summers by the 2040s.

How it was made: Earth Observatory staff used data from several MODIS passes from NASA’s Aqua satellite to make this mosaic. All of the data were collected on June 28, 2010. Original source of the image: Sunny Skies Over the Arctic

Crack in the Larsen C Ice Shelf

Found in Chapter 12: Sea Level Rise


What the image shows:
This photograph shows a rift in the Larsen C Ice Shelf as observed from NASA’s DC-8 research aircraft. An iceberg the size of Delaware broke off from the ice shelf in 2017.

What the report says about ice shelves in Antarctica and climate change?
Floating ice shelves around Antarctica are losing mass at an accelerating rate. Mass loss from floating ice shelves does not directly affect global mean sea level — because that ice is already in the water — but it does lead to the faster flow of land ice into the ocean.

How it was made:
NASA scientist John Sonntag took the photo on November 10, 2016, during an Operation IceBridge flight. Original source of the image: Crack on Larsen C

The Gulf of Mexico

Found in Chapter 13: Ocean Acidification and Other Changes


What the image shows:
Suspended sediment in shallow coastal waters in the Gulf of Mexico near Louisiana.

What the report says about the Gulf of Mexico:
The western Gulf of Mexico and parts of the U.S. Atlantic Coast (south of New York) are currently experiencing significant sea level rise caused by the withdrawal of groundwater and fossil fuels. Continuation of these practices will further amplify sea level rise.

How the image was made:
The MODIS instrument on NASA’s Aqua satellite captured this natural-color image on November 10, 2009. Original source of the image: Sediment in the Gulf of Mexico

Farmland in Virginia

Found in Appendix D


What the image shows:
A fall scene showing farmland in the Page Valley of Virginia, between Shenandoah National Park and Massanutten Mountain.

What the report says about farming and climate change:
Since 1901, the consecutive number of frost-free days and the length of the growing season have increased for the seven contiguous U.S. regions used in this assessment. However, there is important variability at smaller scales, with some locations actually showing decreases of a few days to as much as one to two weeks. However, plant productivity has not increased, and future consequences of the longer growing season are uncertain.

How the image was made: On October 21, 2013, the Operational Land Imager (OLI) on Landsat 8 captured a natural-color image of these neighboring ridges. The Landsat image has been draped over a digital elevation model based on data from the ASTER sensor on the Terra satellite. Original source of the image: Contrasting Ridges in Virginia

Atmospheric river

Found on the Cover and Executive Summary


What the image shows: A tight arc of clouds stretching from Hawaii to California, which is a visible manifestation of an atmospheric river of moisture flowing into western states.

What the report says about atmospheric rivers and climate change:
The frequency and severity of land-falling atmospheric rivers on the U.S. West Coast will increase as a result of increasing evaporation and the higher atmospheric water vapor content that occurs with increasing temperature. Atmospheric rivers are narrow streams of moisture that account for 30 to 40 percent of the typical snow pack and annual precipitation along the Pacific Coast and are associated with severe flooding events.

How it was made: On February 20, 2017, the VIIRS on Suomi NPP captured this natural-color image of conditions over the northeastern Pacific. NASA Earth Observatory data visualizers stitched together two scenes to make the image. Original source of the image: River in the Sky Keeps Flowing Over the West

This piece was originally published on NASA Earth Observatory's Earth Matters blog.

February 7, 2018, 09:46 PST

What caused twin mega-avalanches in Tibet?

By Adam Voiland,
NASA's Earth Observatory

NASA Earth Observatory image by Joshua Stevens, using modified Copernicus Sentinel 2 data processed by the European Space Agency. Image collected on July 21, 2016.

NASA Earth Observatory image by Joshua Stevens, using modified Copernicus Sentinel 2 data processed by the European Space Agency. Image collected on July 21, 2016.

In July 2016, the lower portion of a valley glacier in the Aru Range of Tibet detached and barreled into a nearby valley, killing nine people and hundreds of animals. The huge avalanche, one of the largest scientists had ever seen, sent a tongue of debris spreading across 9 square kilometers (3 square miles). With debris reaching speeds of 140 kilometers (90 miles) per hour, the avalanche was remarkably fast for its size.

Researchers were initially baffled about how it had happened. The glacier was on a nearly flat slope that was too shallow to cause avalanches, especially fast-moving ones. What’s more, the collapse happened at an elevation where permafrost was widespread; it should have securely anchored the glacier to the surface.

Two months later, it happened again — this time to a glacier just a few kilometers away. One gigantic avalanche was unusual; two in a row was unprecedented. The second collapse raised even more questions. Had an earthquake played a role in triggering them? Did climate change play a role? Should we expect more of these mega-avalanches?

Two avalanches
NASA Earth Observatory image by Joshua Stevens and Jesse Allen, using ASTER data from NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Image collected on October 4, 2016.

Now scientists have answers about how these unusual avalanches happened. There were four factors that came together and triggered the collapses, an international team of researchers reported in Nature Geoscience. The scientists analyzed many types of satellite, meteorological, and seismic data to reach their conclusions. They also sent teams of researchers to investigate the avalanches in the field.

First, increasing snowfall since the mid-1990s caused snow to pile up and start working its way toward the front edge of the glaciers (a process known as surging). Second, a great deal of rain fell in the summer of 2016. As a result, water worked its way through crevasses on the surface and lubricated the undersides of the glaciers. Third, water pooled up underneath the glaciers, even as the edges remained frozen to the ground. Fourth, the glaciers sat on a fine-grained layer of siltstone and clay that became extremely slippery.

Silt and clay in the first avalanche's path
Notice the large amounts of silt and clay in the path of the first avalanche. Photo taken on July 15, 2017, by Adrien Gilbert/University of Oslo.

Earth Observatory checked in with Andreas Kääb (University of Oslo), lead author of the study, to find out more about how the avalanche happened and what it means.

These glaciers were not on a steep slope, but the avalanche moved quite quickly. How did that happen?
Strong resistance by the frozen margins and tongues of the glaciers allowed the pressure to build instead of enabling them to adjust. The glaciers were loading up more and more pressure until the frozen margins suddenly failed. Local people reported a load bang. Once the margins failed, there was nothing at the glacier bed to hold it back, just water-soaked clay.

Your study notes that there was “undestroyed grassy vegetation on the lee side of the hills, suggesting that the fast-moving mass had partially jumped over it.” Are you saying the avalanche was airborne? If so, is that unusual?
Yes, for a small part of the avalanche path. We see this for other large-volume, high-speed avalanches, and it really illustrates the massive amount of energy released. You need quite high speeds in order for debris to jump. For us, the phenomenon is important as validation for the speeds obtained from the seismic signals the avalanches triggered and the avalanche modeling that we did.

Would you say these collapses were a product of climate change?
Climate change was necessary, but other factors that had nothing to do with climate were also critical. The increasing mass of the glaciers since the 1990s and the heavy rains and meltwater in 2016 are connected to climate change. The type of bedrock and the way the edges were frozen to the ground had nothing to do with climate change.

Can we expect to see more big glacial collapses as the world gets warmer?
It’s not clear. Climate change could increase or, maybe even more likely, decrease the probability of such massive collapses. Most glaciers on Earth are actually losing mass (not gaining, like the two glaciers in Tibet were). Also, if permafrost becomes less widespread over time and glacier margins melt, it is less likely that pressure will build up in that way that it did in this case.

I know you used several types of satellite data as part of this analysis. Can you mention a few that yielded particularly useful information?
We used a lot of different sources of data: Sentinel 1 and 2, TerraSAR-X/TanDEM-X, Planet Labs, and DigitalGlobe WorldView. Landsat 8 was absolutely critical because it gave the first and critical indication of the soft-bed characteristics. The entire Landsat series was instrumental for checking the glacier history since the 1980s. We also used declassified Corona data back to the 1960s.

Are these sorts of avalanches likely to happen in other parts of the world?
Honestly, I have no clue at the moment, but we would be much less surprised next time. We know now that this type of collapse can happen under special circumstances. (It happened once before in the Caucasus at Kolka Glacier.) One thing that should be investigated is whether there are other glaciers—especially polythermal ones—with these very fine-grained materials underneath them.

3D image of the avalanches
Three dimensional CNES Pléiades image of the avalanches. Processed by Etienne Berthier. Via Twitter.

This piece was originally published on NASA Earth Observatory's Earth Matters blog.

November 8, 2017, 07:13 PST

ACT-America: Settling into the rhythm of the field


A C-130 gets a checkup after a flight. A dedicated flight team keeps the aircraft running and maintained. Credit: NASA/Hannah Halliday.

A C-130 gets a checkup after a flight. A dedicated flight team keeps the aircraft running and maintained. Credit: NASA/Hannah Halliday.

Fieldwork is my favorite part of my job. I have been working as a postdoc at NASA’s Langley Research Center in Hampton, Virginia, for a few days over a year, and I’m still not over the excitement of arriving somewhere new, ready to take measurements and run our instruments.

My background is in chemistry, but I slid into meteorology because I wanted to apply myself to environmental issues that had global impact. That decision put me on a path into the world of air quality research, and ultimately to NASA to work with airborne science. While I’m still new to flying for science, I love working with instruments and taking measurements. Being on an aircraft turns that feeling up to 11.

plane view
The C-130 doesn’t have many windows, but Halliday is lucky to have one beside her seat. Flights often have low-altitude runs, and offer views of the country from unique angles. This is a view of the Mississippi River from the Sunday, Nov. 5, flight. Credit: NASA/Hannah Halliday.

Atmospheric Carbon and Transport-America, or ACT-AMERICA, has been an especially cool project to be involved with because I earned my Ph.D. at Penn State, where principal investigator Ken Davis and other members of the ACT-AMERICA planning team are based. Working with ACT-AMERICA is part serious work and part fun reunion, working with people I know well on a totally new subject and project. I got to fly with the mission last spring, and I’ve come back to join them again for two weeks in Shreveport, Louisiana.

On Saturday, Nov. 4, we took a break from flying to do instrument work and maintenance. For my group, which is tasked with the Atmospheric Vertical Observations of CO2 in the Earth’s Troposphere, or AVOCET, in-situ measurements, that meant calibrating our instruments. When we calibrate, we send our instruments gases that have a known concentration and record what our instruments measure. Doing this regularly allows us to keep track and correct for the instrument drifting over time, and to maintain the accuracy and precision of our measurements.

Our two aircraft, a C-130 and a B-200, are stored in different locations when we’re at our ground sites. The calibration gas tanks are heavy, so for ease of use we’ve built our calibration gas cylinders their own little cart that they live on, which can be towed from one location to another. The cylinders are left on the cart, where we put a regulator on the calibration cylinder we want to use and run a tube into the airplane. It’s a simple solution that lets us easily and quickly use the same calibration gases on two different aircraft.

Hannah Halliday monitors incoming measurements.
Hannah Halliday, right, monitors incoming AVOCET measurements during a Nov. 2 science flight. Next to her are Theresa Klausner and Max Eckle, Ph.D. students with the German Aerospace Center, DLR, which has joined the fall flight campaign to test an instrument that measures methane and ethane. Credit: NASA/David C. Bowman.
Researchers talk during a flight.
Bianca Baier, a postdoctoral researcher with NOAA’s Earth Systems Research Lab in Boulder, Colorado, and Ken Davis, ACT-America principal investigator from Penn State, talk during a flight. Credit: NASA/David C. Bowman.

One of the reasons I love working in science is that our measurements and our work is built on a heap of clever solutions to small problems. While we also stand on the shoulders of scientific giants who had deep insights into the workings of the universe (for instance, Isaac Newton realizing that the gravity affecting an apple also affects the stars), in our day-to-day work we use the cleverness of the people who worked out the universal swage fittings, or the person who figured out how to set up our inlet system to bring air in from outside the plane when we’re at high altitude.

Calibration gas cylinders
Calibration gas cylinders on their transportation cart. During a calibration, scientists use three gases with low, middle and high concentrations, and use this information to understand how the instrument will behave when it “sees” gases in the environment. Credit: NASA/Hannah Halliday.

We’re not all brilliant all the time, but by looking at a problem long enough we can often find a clever solution to a small vexing problem (such as how to quickly transport our calibration cylinders), and that’s where our progress comes from.

On Sunday, Nov. 5, we flew a science mission, measuring the inflow of air from the Gulf of Mexico. It was a busy day for me, because I was both tending my group’s instruments and also taking flask samples for the National Oceanic and Atmospheric Administration (NOAA). NOAA uses glass-lined containers to trap air at specific locations on the flight track. They take these samples back to their lab in Boulder, Colorado, where they measure the greenhouse gases as well as other molecules that help determine whether samples were influenced by other sources, such as traffic or wildfires. My job was to follow their sampling plan, telling their mostly automated system when to collect a sample and coordinating with our in-flight calibrations.

Specialized inlets draw air into the instruments and have different designs based on the needs of the instruments.
Specialized inlets draw air into the instruments and have different designs based on the needs of the instruments. These inlets are located near the front of the aircraft so they don’t sample the exhaust from the engines. Credit: NASA/David C. Bowman.

The flights can be quite busy, and it’s a full day of activity. For the four to five hours that a typical science flight will last, we have an additional three hours of flight prep before we take off, and a debriefing meeting once we land, plus data workup and archiving the preliminary data once we’re back in our hotel rooms.

It’s satisfying work, but it’s important that we have non-flight days like Saturday to catch up on our instrument maintenance as well as personal things—exercise, laundry, even sleep. When we’re in the field there’s no set schedule like when we’re in the office, and it’s important to grab that time when we can, because flight days depend on the weather, and a good measurement day waits for no scientist, not even when they have a plane!

This piece was originally published on the NASA Earth Expeditions blog.

November 3, 2017, 07:12 PDT

ACT-America: Waiting for the great big teaspoon in the sky


ACT America group with the B200 King Air and C130 Hercules in Shreveport, Louisiana. Credit: NASA/David C. Bowman.

ACT America group with the B200 King Air and C130 Hercules in Shreveport, Louisiana. Credit: NASA/David C. Bowman.


I don’t know what I was expecting from Louisiana in late October, but I definitely wasn’t expecting cold and damp.

I’m here for the final leg of the fall 2017 flight campaign for Atmospheric Carbon and Transport-America, or ACT-America, a five-year NASA study looking at the transport of carbon dioxide and methane by weather systems in the eastern United States.

This is the third flight campaign of the study and the team has just arrived in Shreveport—home base for the next two weeks. Flight operations will be based out of Shreveport Regional Airport. Sleep operations are based at a hotel just a few minutes down the road in Bossier City.

NASA Langley B200
The NASA Langley B200 sits in a hangar at Shreveport Regional Airport. The B200 and the C-130 won’t fly today because the weather pattern is too similar to the one they flew through the day before. Credit: NASA/David C. Bowman.

As I’ve already mentioned, the weather so far is pretty meh. There’s a slow-moving front to thank for that. But more on the creeping front later on. First, a little taste of ACT-America’s home for the next couple of weeks.

Shreveport is the largest city in Ark-La-Tex, a region that includes Northwestern Louisiana, Northeastern Texas and South Arkansas. It and Bossier City are divided by the Red River. Shreveport is on the west, Bossier City the east. Casinos dot the riverbank—the Horseshoe, Boomtown, Eldorado, Margaritaville, Diamond Jack’s.

It’s no big surprise that you can’t go far here without finding restaurants that have Cajun and Creole dishes on the menu. The first night in town, a contingent from the ACT-America team visits the Blind Tiger in downtown Shreveport. Steaming plates of crawfish etouffe come out of the kitchen accompanied by crusty homemade croutons and mounds of rice. There’s a dish called Cajun fried corn—breaded, deep-fried corn on the cob. Louisiana beers are on tap. Gumbo is spelled gumbeaux.

The State Fair of Louisiana is taking place in Shreveport. It claims to be the largest livestock show and carnival in the state. Rick Rowe, a reporter with the local ABC affiliate, does a segment on the morning news with a man who sells fried cheese at the fair. Rowe samples a cube that’s just been pulled from the bubbling hot oil and sounds positively ecstatic as he bites through the crispy breading.

Unloading equipment and supplies
Although there won’t be a flight today, there’s still work to do. Here, Yonghoon Choi, an instrument investigator from NASA Langley, and Max Eckle, a Ph.D. student with DLR, the German aerospace agency, help unload equipment and supplies that have been trucked to Shreveport from the previous ACT-America home base in Lincoln, Nebraska. The fall flights are giving the DLR a chance to see how their methane- and ethane-detecting Quantum Cascade Laser Spectrometer operates in the field, while also allowing the ACT-America scientists to better zero in on methane sources. Credit: NASA/David C. Bowman.

The state fair isn’t the only thing going on, though. Another news segment has a meteorologist visiting a Bossier City shop that sells power equipment: lawnmowers, leaf blowers, generators, chainsaws. They have an event coming up called Sawdust Days. Folks who show up for Sawdust Days will be treated to a special demonstration by a man who does wood carvings with a chainsaw.

“He’s carved a lot of pieces right here,” the shop owner says, gesturing to a rustic-looking wooden bear that towers over him and the meteorologist, “so he’s pretty good at it.”

I turn off the TV and head to the airport to catch up with another guy who knows something about meteorology—Ken Davis, principal investigator for ACT-America and a professor of meteorology at Penn State University.

Weather is critical to ACT-America. In fact, it’s the reason that, on its first full day in Shreveport, the campaign is keeping its C-130 and B200 aircraft on the ground. Just the day before, as ACT-America moved from its previous home base in Lincoln, Nebraska, to Shreveport, the aircraft passed through the very front that’s inching through Louisiana now, bringing the chilly air and rain along with it. Instruments on both aircraft measured carbon dioxide and methane levels during the transit.

“This weather is relatively similar to what we documented yesterday,” Davis says. “If we measured it yesterday, we don’t need to measure it today.”

What the team will want to measure, though, is what happens to the greenhouse gases after the cold front stalls not too far south of Shreveport. There, it’ll get a push from warm, low-level air flowing in from the Gulf of Mexico and then move northeast as a warm front.

It’s a scenario that may take a couple of days to play out, so the next research flights may happen tomorrow, they may happen the day after tomorrow. The atmosphere will do what it wants to do, thank you. Davis likens it to a big cup of coffee.

“Over the timescale of days,” he stretches out days when he says it, “somebody’s stirring it with a great big teaspoon. And you’ve got to wait … every stir takes a couple of days. We want to measure different parts of that.”

Late night planning meeting
Hannah Halliday, left, a postdoctoral researcher at NASA Langley, and Bianca Baier, a postdoctoral researcher at the NOAA Earth System Research Laboratory in Boulder, Colorado, point out to Ken Davis a region where fires might make for interesting measurements. Credit: NASA/David C. Bowman.

Later on, at a planning meeting, they make the final decision—another down day tomorrow, then a flight the next day when the great big teaspoon in the sky has finally mixed things up just so. It’ll be a good day for airborne science.

The meeting breaks up. Folks head back to their hotel rooms.

With a free evening in front of me, I think about taking a chilly walk down the bank of the Red River to get a look at the Shreveport skyline at night. And for some reason, I’m craving a piping hot cup of coffee.

This piece was originally published on the NASA Earth Expeditions blog.

October 4, 2017, 14:16 PDT

Searching for the bluest blue

By Joaquín E. Chaves-Cedeño / South Pacific Ocean

The crew prepares to deploy the radiometer from the stern of the R/V Nathaniel Palmer to measure the optical properties of the water from the surface down all the way down to the bottom of the photic zone. Credit: Lena Schulze/FSU.

The crew prepares to deploy the radiometer from the stern of the R/V Nathaniel Palmer to measure the optical properties of the water from the surface down all the way down to the bottom of the photic zone. Credit: Lena Schulze/FSU.

It doesn’t take a lot of technology to see that the ocean is blue. And when it comes to the blueness of the ocean, it doesn’t get much more blue than where I am. My current home and office is the research vessel Nathaniel B. Palmer—the largest icebreaker that supports the United States Antarctic Program—which is on an oceanographic expedition across the South Pacific Ocean. On this voyage, however, the Palmer hasn’t broken any ice.

Our Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) P06 campaign departed Sydney, Australia, on July 3, and successfully ended the first leg of this journey on August 16 in Papeete, French Polynesia, also known as Tahiti. This is where our team from NASA Goddard Space Flight Center (Scott Freeman, Michael Novak, and I) joined dozens of other scientists, graduate students, marine technicians, officers and crew members for the second and final leg that ended in the port of Valparaiso, Chile, on September 30.

The GO-SHIP program is part of the long history of international programs that have criss-crossed the major ocean basins, gathering fundamental hydrographic data that support our ever growing understanding of the global ocean and its role in regulating Earth’s climate, and of the physical and chemical processes that determine the distribution and abundance of marine life. This latter topic regarding the ecology of the ocean is what brings our Goddard team along for the ride.

The P06 ship track, for the most part, follows along 32.5° of latitude south. That route places our course just south of the center of the South Pacific Gyre—the largest of the five major oceanic gyres, which form part the global system of ocean circulation. The Gyre, on average, holds the clearest, bluest ocean waters of any other ocean basin. This blueness is the macroscopic expression of its dearth of ocean life. We have seen nary a fish or other ship since we departed Tahiti (as this is not a major shipping route). Oceanic gyres are often called the deserts of the sea. On land, desert landscapes are limited in their capacity to support life by the availability of water. Here, lack of water is not the issue. Water, however, is at least the co-conspirator in keeping life from flourishing. Physics, as it turns out, is what holds the key to this barren waterscape.

MODIS chlorophyll concentrations indicating phytoplankton, with the R/V Nathaniel B. Palmer’s ship track superimposed
This map shows MODIS chlorophyll concentrations indicating phytoplankton, with the R/V Nathaniel B. Palmer’s ship track superimposed. The deeper blue the color the less chlorophyll there is. Credit: NASA.

Due to the physics of fluids on a rotating sphere such as our planet, the upper ocean currents slowly rotate counterclockwise around the edges of the center of the Gyre—as a proper Southern Hemisphere gyre should—and a fraction of that flow is deflected inward, toward its center. With water flowing toward the center from all directions, literally piling up and bulging the surface of the ocean, albeit, by just a few centimeters across thousands of miles, gravity pushes down on this pile of water.

This relentless downward push puts a lock on life.

The pioneers of life in the ocean, tiny microscopic organisms known as phytoplankton, drift in the currents and grow on a steady mineral diet of carbon dioxide, nitrogen, and phosphorus, along with a dash of iron. (Meanwhile, they expel oxygen gas as a by-product, to the great benefit of life on Earth). Phytoplankton obtain most of their sustenance from the ocean below. What happens in this Southern Hemisphere gyre is that layers of denser water trap the nitrogen- and phosphorus-rich water to depths that are out of reach to most of the phytoplankton. And phytoplankton that do make it to that depth are too starved of sunlight to spark the engine of photosynthesis that allows them to grow.

Why are we here and where does NASA come into this story? Since the late 1970s, NASA has pursued, experimentally at first, and now as a sustained program, measuring the color of the oceans from Earth-orbiting satellites as a means to quantify the abundance of microscopic life. It’s microbiology from space, in a way. Formally, though, we call it “ocean color remote sensing.” Bound to polar orbits that allow them to scan the entire surface of the globe every couple of days, satellites whiz by at several hundred miles above the atmosphere carrying meticulously engineered spectra-radiometers, or cameras capable of measuring the quantity and quality, or color, of the light that reaches its sensors. This is where our work aboard the R/V Palmer comes into the story.

Crew members prepare an optical instrument for deployment over the side of the ship to collect optical measurements
Scott Freeman of NASA works with an R/V Nathaniel Palmer crew member to prepare an optical instrument for deployment over the side of the ship to collect optical measurements. Credit: FSU/Lena Schulze.

The data the satellites beam down from orbit do not directly measure how much plant life there is in the ocean. Satellite instruments give us digital signals that relate to the amount of light that reaches their sensors. It is up to us to translate, or calibrate, those signals into meaningful and accurate measurements of microscopic life, along with temperature, salinity, sediment load, sea level height, wind and sea surface roughness, or any other of the many environmental and geophysical variables satellite sensors can help us detect at the surface of the ocean. To properly calibrate a satellite sensor and validate its data products, we must obtain field measurements of the highest possible quality. That is what our team from NASA Goddard is here to do.

Around midday, typically the time an ocean color satellite is flying over our location, we perform our measurements and collect samples. We measure the optical properties of the water with our instruments to compare what we see from the R/V Palmer to what the satellites measure from their orbit. At the same time that we perform our battery of optical measurements, we also collect phytoplankton samples to estimate their abundance and species composition as well as the concentration of chlorophyll-a, the green pigment common to most photosynthesizing organisms, such as plants. By simultaneously collecting these two types of measurements—light and microscopic plant abundance—we are able to build the mathematical relationships that make the validation of satellite data products possible.

Mike Novack of NASA studies the optical and biological characteristics of sea water samples in the ship’s laboratory.
Mike Novack of NASA studies the optical and biological characteristics of sea water samples in the ship’s laboratory. Credit: NASA/Joaquin Chavez.

The waters of the South Pacific Gyre are an ideal location for gathering validation quality data, perhaps one of the most desirable, because there are few complicating factors and sources of uncertainty that blur the connection we want to establish between the color of the water and phytoplankton life abundance. Our measurements will extend NASA’s ocean chlorophyll-a dataset to some of the lowest such values on Earth. The water here is blue; in fact, it’s the bluest ocean water on Earth.

This piece was originally published on the NASA Earth Expeditions blog.

September 25, 2017, 07:29 PDT

Up in smoke (and clouds) over the southeast Atlantic

By Michael Diamond / São Tomé and Príncipe

Smoke from small-scale burning on the northern side of São Tomé island. Although burning was prevalent across São Tomé, the vast majority of the smoke in our study area originated from the south-central African continent, in countries like Angola and the Democratic Republic of the Congo. Credit: Michael Diamond.

Smoke from small-scale burning on the northern side of São Tomé island. Although burning was prevalent across São Tomé, the vast majority of the smoke in our study area originated from the south-central African continent, in countries like Angola and the Democratic Republic of the Congo. Credit: Michael Diamond.

In August, dozens of scientists from across the United States descended on the small island nation of São Tomé and Príncipe. Nestled on the equator off the coast of western central Africa, São Tomé was an ideal location to study the phenomenon we had all gathered to observe: a seasonal plume of smoke from agricultural and forest fires that gets lofted by the prevailing winds from the African continent to over the southeast Atlantic Ocean. As part of the NASA field campaign Observations of Aerosols above Clouds and their Interactions, or ORACLES, our aim was to better understand how all that smoke over the ocean affects the amount of sunlight that gets absorbed in the atmosphere and at Earth’s surface.

Aerosols—small airborne particles, like smoke, desert dust, and sulfates from power plants—affect the amount of energy the southeastern Atlantic Ocean gets from the sun, not only by absorbing and reflecting sunlight directly, but also through its effects on clouds. A large expanse of very bright low clouds covers much of the southeastern Atlantic, very similar to the clouds off the coast of California that create San Francisco’s characteristic fog. Smoke can change the properties of these clouds in various ways, including brightening the clouds by creating lots of small droplets, which, interestingly, make the clouds less likely to drizzle and thus stick around for a longer time. Both of those changes allow the clouds to reflect more sunlight, creating a cooling effect.

As anyone who’s been outside on an overcast day knows, clouds play a major role in regulating the amount of the sun’s energy that gets to Earth’s surface, so any changes in the clouds over the southeast Atlantic and those like them across the globe can have big implications for Earth’s energy balance. It is well-known that the heat-trapping effect of man-made greenhouse gas emissions have led to a net warming over the 20th and early 21st centuries. However, unresolved scientific questions about the potential cooling effects of aerosol-cloud interactions over the past century represent a large fraction of the uncertainty in estimates of how much humans have affected the present-day climate.

Snapshot of the smoke-cloud system over the southeast Atlantic Ocean
Snapshot of the smoke-cloud system over the southeast Atlantic Ocean, taken from the window of the P-3 during the August 24th routine flight. A thick plume of milky-gray smoke overlies a blue ocean surface dotted with puffy white low clouds. Credit: Michael Diamond.

For ORACLES, NASA’s P-3 Orion aircraft was our primary transport for measuring the smoke-cloud system. On the P-3 we have a set of instruments that can be broadly separated into two categories: in-situ and remote sensing.

In-situ instruments, like those in the picture collage below, measure things in place through air inlets. For example, we have particle counters that can measure the number and size of smoke particles in a plume, and cloud probes that can measure how much liquid water is in a cloud.

In contrast, remote sensing instruments sense things remotely; that is, they tell us about the properties of clouds and smoke from far away, like how we use a telescope to observe stars. In our case, we use instruments like a radar to look at precipitation and a lidar (a laser that provides information about a what’s between the plane and the ground) to look at the smoke plume’s structure.

Clouds play a major role in regulating the amount of the sun’s energy that gets to Earth’s surface, so any changes in the clouds over the southeast Atlantic and those like them across the globe can have big implications for Earth’s energy balance.

Of course, the in-situ instruments that measure clouds aren’t much use when flying through smoke above the clouds, and when we fly high to get good lidar profiles, we can’t get in-situ smoke measurements. In addition, some of the remote sensing instruments don’t work well when high clouds are present, and the smoke and low clouds aren’t always in the same place from one day to the next. How do we balance all these competing objectives to produce a flight that collects high-quality, usable data? That’s where the forecasting and flight-planning team comes in.

As a graduate student at the University of Washington in Seattle, my role in ORACLES is to look at model forecasts from computer simulations and satellite imagery and then use flight-planning software to create flight plans that will meet our scientific objectives. On what we call routine flights, that mostly means picking altitudes and aircraft maneuvers rather than locations, because for these flights we always stick to the same north-south track to build up statistics that can be used to compare our observations with various computer models.

One example of the choices that have to be made here is whether to do stacked legs, in which we fly over the same location at different heights, or sequential legs, which let us cover more ground because we don’t need to backtrack and instead gives us observations at slightly different locations that might be harder to interpret. A similar choice has to be made when we switch between altitudes: we can ramp down and cover a lot of ground, or do a square spiral and get a vertical profile over the same location.

The other type of flight we call a flight of opportunity, in which we have more latitude in choosing our flight location to sample interesting features, or to avoid pitfalls like high clouds, that are identified by the models.

Resampling flight plan example
Example of a resampling flight plan conducted on the August 15th routine flight (dark blue line) and August 17th flight of opportunity (cyan line). The blue gradient lines represent the motion of air parcels first sampled on the 15th (dark blue) and then resampled 2 days later on the 17th (light blue). Black dots represent the location of the air parcels after 1 day. Credit: NOAA Air Resources Laboratory/Michael Diamond.

We were also able to combine flight plans so that the flights of opportunity could resample air that we observed a day or two earlier. Ideally, to study how the smoke evolves during the course of its journey over the Atlantic, we would be able to follow it as the winds push it westward and downward over a period of days. Unfortunately, this is not at all practical in an aircraft with nine hours’ worth of fuel. Instead, we can run a weather forecast model to predict where the air we sampled during a routine flight will end up in a few days. Then, like an advanced game of connect-the-dots, we can design our next target of opportunity flight to hit the right location and altitude to resample that air to see how it’s evolved.

Our August 17 flight of opportunity was a bit special because, rather than return to São Tomé, the P-3 landed on Ascension Island in the middle of the South Atlantic Ocean so we could do some joint flights with a British team studying similar science questions. On the way to Ascension, we planned our track to intersect the new (forecasted) locations of a few different smoke plume air parcels that we sampled on August 15.

Now that the 2017 ORACLES deployment is over, the task ahead of us will be to analyze the data we collected in flights like the August 15-17 resampling mission to produce new scientific insights into this unique smoke-cloud system. Within a year, all of our data will become public at https://espoarchive.nasa.gov/archive/browse/oracles so that other researchers across the country and around the world will be able to contribute their own research and generate new ideas and solutions. The data from last year’s deployment, which took place in September and was based out of Walvis Bay, Namibia, is already available. However, we’re not done with data collection just yet: We’ll be heading back into the southeast Atlantic next year for one last deployment, this time in October to characterize the end of the southern African fire season.

This piece was originally published on the NASA Earth Expeditions blog.

September 19, 2017, 08:25 PDT

Weather or climate change?

From NASA’s Global Climate Change website team

A pre-winter storm located just off the coast of southwestern Australia was photographed from the International Space Station on March 29, 2014. A solar array panel on the orbital outpost is in the left side of the frame.

A pre-winter storm located just off the coast of southwestern Australia was photographed from the International Space Station on March 29, 2014. A solar array panel on the orbital outpost is in the left side of the frame.

One query we frequently get from the public is to explain the difference between weather and climate. It’s a great question.

Some people say “weather is what you get” and “climate is what you expect.” In a nutshell, “weather” refers to the more local changes in the climate we see around us, on short timescales from minutes to hours to days to weeks. Examples are familiar – rain, snow, clouds, winds, storms, heat waves and floods. “Climate” refers to longer-term averages (they may be regional or global), and can be thought of as the weather averaged over several seasons, years or decades. Climate change is harder for us to get a sense of because the timescales involved are much longer, and the impact of climate changes can be less immediate.

Dr. Eric Fetzer, a scientist at NASA’s Jet Propulsion Laboratory, explains it this way: “Weather describes how the atmosphere behaves over weeks or less. Climate is how it behaves over time periods of about a month or longer. So climate refers to seasonal and longer periods, out to centuries and millennia.”

In addition to long-term climate change, there are shorter term climate variations. This so-called climate variability can be represented by periodic or intermittent changes related to El Niño, La Niña, volcanic eruptions, or other changes in the Earth system.

As always, we welcome your questions and comments.

August 7, 2017, 10:31 PDT

The next big question in sea level science

Projecting regional changes

By Laura Faye Tenenbaum

Lower Manhattan, where the Regional Sea Level Changes and Coastal Impacts Conference was held, lies within a few feet of sea level. Credit: NASA.

Lower Manhattan, where the Regional Sea Level Changes and Coastal Impacts Conference was held, lies within a few feet of sea level. Credit: NASA.

“Sea level scientists have a pretty good grasp on global mean sea level,” said Steve Nerem, a professor in the Aerospace Engineering Sciences Department at the University of Colorado and the team leader for NASA’s Sea Level Change Team (N-SLCT). “It’s the regional sea level change that’s the next big question, the next big step for sea level science,” he added.

Nerem and much of the rest of the N-SLCT were in New York City this July where more than 300 scientists from 42 countries gathered at Columbia University for a weeklong Regional Sea Level Changes and Coastal Impacts Conference. The international conference was organized by the World Climate Research Programme (WCRP), Climate and Ocean – Variability, Predictability, and Change (CLIVAR), and the UNESCO Intergovernmental Oceanographic Commission and was co-sponsored by NASA.

Regional sea level change is more variable, over both space and time, than global sea level change and can diverge by up to 7 inches (20 centimeters) or more from the global mean. Additionally, making regional projections about future sea level differs from making global mean sea level projections. This is due to the fact that different processes contribute to sea level change in coastal regions.

Global sea level rise is caused by thermal expansion of warmer water plus contributions from ice sheets and glaciers. Regional sea level change, especially along coastlines, is influenced by additional factors, including vertical land movements, waves and tides, and winds and storms. So in order to estimate sea level inundation and flood risk, scientists have to understand all the factors that contribute to extreme water levels such as local sea level rise, land subsidence, tides, waves and storm surge.

“Where I live, it’s hard to separate the pure science from the applications. With all this flooding, the broader significance of your work is very clear.”
- Ben Hamlington, upcoming NASA Sea Level Change Team leader

Members of the N-SLCT understand the importance of studying coastal sea level change and improving the accuracy of regional projections. Ben Hamlington, assistant professor in the Ocean, Earth and Atmospheric Sciences Department at Old Dominion University in Norfolk, Virginia, and upcoming team leader for N-SLCT is serious about understanding sea level.

“The overarching theme of my scientific research,” he said, is “to consistently improve regional sea level projections.” Manhattan, where the conference was held, for example, lies within a few feet of sea level, and furthermore, the U.S. East Coast has some of the highest amounts of projected sea level increase.

“Global means aren’t very useful for someone who’s on the coast of Virginia where I live,” Hamlington said. A main part of the challenge of predicting regional sea level is that what causes the sea level changes and the flooding varies dramatically from place to place. Hamlington described a term called “nuisance flooding,” which is a type of persistent tidal flooding that leads to public inconveniences like road closures and backed-up storm water systems.

“Basically it means your path to work has to change because a certain road is blocked or impassable. You can still get to work, but it might take longer,” he explained. Right now, these nuisance-flooding events occur multiple times a year. But as sea level continues to rise, the nuisance flooding will get more and more frequent and will become even more of a problem. “Where I live, it’s hard to separate the pure science from the applications. With all this flooding, the broader significance of your work is very clear,” he said.

In Norfolk, Virginia, glacial isostatic adjustment (GIA) is around 0.04 inches (1 millimeter) per year, another millimeter per year of subsidence is due to slow subsidence into the Chesapeake Bay Meteor Impact Crater plus ground water pumping. Finally add 0.08 inches (2 millimeters) per year from the ocean rising and “You get the long-term tide gauge rate of relative sea level rise of just lower than 0.20 inches (5 millimeters) per year over the last 100 years. That’s a pretty high rate of sea level rise over a long period of time,” Hamlington explained. “Beyond nuisance flooding, there are also extreme events,” he continued. “During a storm event, you can get several feet of water in some parts of Norfolk.”

Actionable science

Stakeholders and decision makers are the ones driving the demand for improved regional sea level projections, Hamlington continued. “They’re the ones driving the discussion toward regional projections and that’s what’s needed for planning efforts.” These stakeholders include state and local public works officers responsible for infrastructure such as stadiums, roads, seawalls, and dykes plus pumps, water utilities, other utilities, businesses, and coastal inhabitants.

Scientists are responsible for helping society. This is why decision makers and scientists have come together to co-produce actionable science, to discuss how to communicate and collaborate, and to ensure that sea level science is being understood by the adaptation community.

“This is one of the biggest sea level conferences that we’ve had, when everybody who is working in different areas of the field comes together,” said Nerem. There were presentations on a variety of techniques to measure sea level change: tide gauges, measurements in marshes, paleo-sea level, corals, but from the perspective of the N-SLCT, “ We’re really focused on how to use remote sensing, satellite altimetry from Jason-1, 2 and 3 and Gravity Recovery and Climate Experiment (GRACE) combined with GPS measurements to improve regional sea level measurements and projections.”

Nerem’s project targets regions around the globe that are susceptible to inundation but don’t have much measurement infrastructure, such as Bangladesh. Many of these regions do not have detailed digital elevation models or 50 years of tide gauge measurements like we do in the United States. “If we use our satellite techniques and test them in a place we understand, then we can go out where we don’t have that infrastructure and assess future sea level change in those regions.”

The N-SLCT hopes to leverage the satellite observations as much as possible to try to better understand future regional sea level change. This will help decision makers, coastal managers and stakeholders better adapt and prepare for the impacts of sea level rise.

According to Nerem, “We would like to produce a new assessment of future regional sea level change that benefits from the extensive record of satellite measurements collected by NASA.”

Thank you for reading,